
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Position

\qquad

- Where an object is at a particular time \qquad with respect to a reference frame.
- Earth is often used as a reference frame. \qquad

- The car is 10 m to the right of the house.
- The car is 20 m to the left of the tree. $\begin{gathered}\text { Huse - rdevvies (public domin) } \\ \text { Car }- \text { Machoovak (public domain) }\end{gathered}$ Tree-GDJ (public domain)

Displacement

- The change in position of an object.
$\Delta x=x_{f}-x_{0}$
where:
Δx is the displacement
x_{f} is the final position
x_{0} is the initial position

\qquad

Distance

- Displacement is described in terms of direction, distance is not.
- Distance is defined to be the magnitude or size of displacement between two positions.
- Note that the distance between two positions is not the same as the distance traveled between them. Distance traveled is the total length of the path traveled between two positions.

Vectors and Scalars

- A vector is any quantity with both \qquad magnitude and direction.
- Displacement (100 km North) \qquad
- Velocity (110 km/h West)
- A scalar is any quantity that has a magnitude, but no direction.
- Temperature $\left(20^{\circ} \mathrm{C}\right)$
- Mass (70 kg)

Direction

- To describe the direction of a vector quantity, you must designate a coordinate system within the reference frame.

Note: It does not matter which direction is positive as long as the system is clear and consistent. Once you assign a positive direction and start solving a problem, you cannot change it

Velocity

- Average velocity is displacement \qquad (change in position) divided by the time of travel.

$$
\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{0}}{t_{f}-t_{0}}
$$

Where:
\bar{v} is the average velocity
x is the displacement
t is the time

- The average velocity of an object does not tell us anything about what happens to it between the start and end points.
- The motion needs to be divided into smaller intervals to get more detailed information.
- Instantaneous velocity, v, is the average velocity at a specific instant in time (or over an infinitesimally small time interval).

Speed

- Average speed is the distance traveled \qquad divided by elapsed time.
- Instantaneous speed is the magnitude of instantaneous velocity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Example

- You drive 5 km to school, turn around and \qquad then drive back home. The trip takes 0.5 hours. \qquad
\qquad
\qquad
\qquad
average velocity $=\frac{\Delta x}{t}=0$
- A graph can also be used to visualize the motion.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Acceleration

- Average acceleration is the rate at which velocity changes.

$$
\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{0}}{t_{f}-t_{0}}
$$

Where:

\bar{a} is the average acceleration
v is the velocity
t is the time

- Acceleration is a vector in the same direction as the change in velocity.
- Since velocity is a vector, it can change
\qquad either in magnitude or in direction.
- Acceleration is therefore a change in
\qquad either speed or direction, or both.
- When an object's acceleration is in the \qquad same direction of its motion, the object will speed up.
- When an object's acceleration is opposite to the direction of its motion, the object will slow down.

Example

- A car with a velocity of $10 \mathrm{~m} / \mathrm{s}$ accelerates to a velocity of $20 \mathrm{~m} / \mathrm{s}$ in 20 seconds then drives at a constant velocity for 20 seconds. The car then slows down to $5.0 \mathrm{~m} / \mathrm{s}$ in 20 seconds. Calculate the average acceleration for the first and last 20 seconds of the trip.
- First 20 seconds
$\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{0}}{t_{f}-t_{0}}$
$\bar{a}=\frac{20-10}{20}=0.5 \mathrm{~m} / \mathrm{s}^{2}$
- Last 20 seconds
$\bar{a}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{0}}{t_{f}-t_{0}}$
$\bar{a}=\frac{5-20}{20}=-0.75 \mathrm{~m} / \mathrm{s}^{2}$

